Evidential fully convolutional network for semantic segmentation

نویسندگان

چکیده

We propose a hybrid architecture composed of fully convolutional network (FCN) and Dempster-Shafer layer for image semantic segmentation. In the so-called evidential FCN (E-FCN), an encoder-decoder first extracts pixel-wise feature maps from input image. A then computes mass functions at each pixel location based on distances to prototypes. Finally, utility performs segmentation allows imprecise classification ambiguous pixels outliers. end-to-end learning strategy jointly updating parameters, which can make use soft (imprecise) labels. Experiments using three databases (Pascal VOC 2011, MIT-scene Parsing SIFT Flow) show that proposed combination improves accuracy calibration by assigning confusing multi-class sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Training Bit Fully Convolutional Network for Fast Semantic Segmentation

Fully convolutional neural networks give accurate, per-pixel prediction for input images and have applications like semantic segmentation. However, a typical FCN usually requires lots of floating point computation and large run-time memory, which effectively limits its usability. We propose a method to train Bit Fully Convolution Network (BFCN), a fully convolutional neural network that has low...

متن کامل

Improving Fully Convolution Network for Semantic Segmentation

Fully Convolution Networks (FCN) have achieved great success in dense prediction tasks including semantic segmentation. In this paper, we start from discussing FCN by understanding its architecture limitations in building a strong segmentation network. Next, we present our Improved Fully Convolution Network (IFCN). In contrast to FCN, IFCN introduces a context network that progressively expands...

متن کامل

Fully Convolutional Network for Liver Segmentation and Lesions Detection

In this work we explore a fully convolutional network (FCN) for the task of liver segmentation and liver metastases detection in computed tomography (CT) examinations. FCN has proven to be a very powerful tool for semantic segmentation. We explore the FCN performance on a relatively small dataset and compare it to patch based CNN and sparsity based classification schemes. Our data contains CT e...

متن کامل

Dense Fully Convolutional Network for Skin Lesion Segmentation

Skin cancer is a deadly disease and is on the rise in the world. Computerized diagnosis of skin cancer can accelerate the detection of this type of cancer that is a key point in increasing the survival rate of patients. Lesion segmentation in skin images is an important step in computerized detection of the skin cancer. Existing methods for this aim usually lack accuracy especially in fuzzy bor...

متن کامل

High-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks

We propose a method for high-performance semantic image segmentation (or semantic pixel labelling) based on very deep residual networks, which achieves the state-of-the-art performance. A few design factors are carefully considered to this end. We make the following contributions. (i) First, we evaluate different variations of a fully convolutional residual network so as to find the best config...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Intelligence

سال: 2021

ISSN: ['0924-669X', '1573-7497']

DOI: https://doi.org/10.1007/s10489-021-02327-0